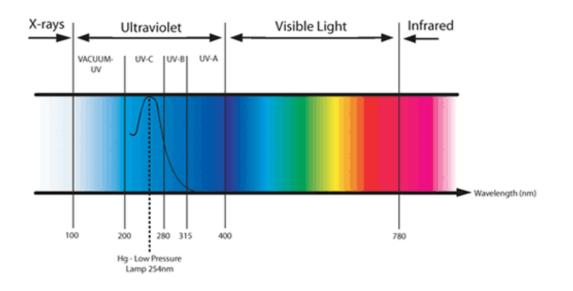
Achieving Ultra-low Gloss Coatings Through the Use of Excimer Technology

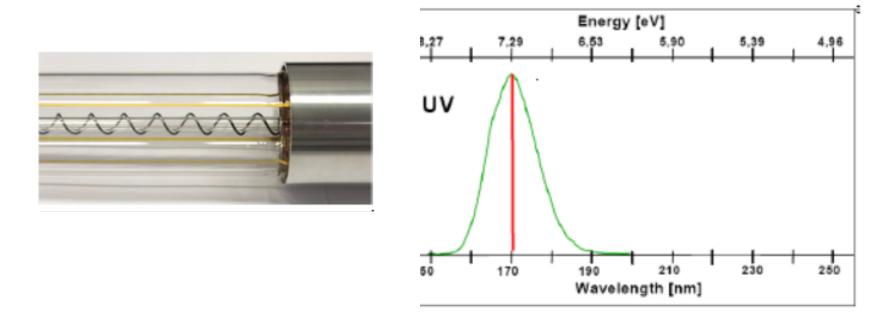
Jonathan Shaw, Ph.D.


Background

What is Ultra-Violet (UV) curing?

- Using UV energy or visible light, as opposed to heat, solvent evaporation, or oxidation (air-drying), to convert a liquid formulation into a solid material
- Types of energy used:

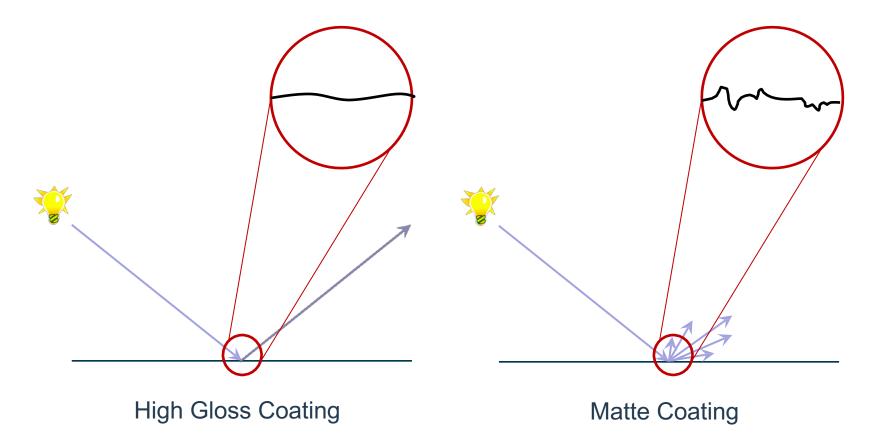
Ultra Violet (UV): 200 – 400 nm Visible light: typically 380 - 450 nm


ELECTROMAGNETIC SPECTRUM

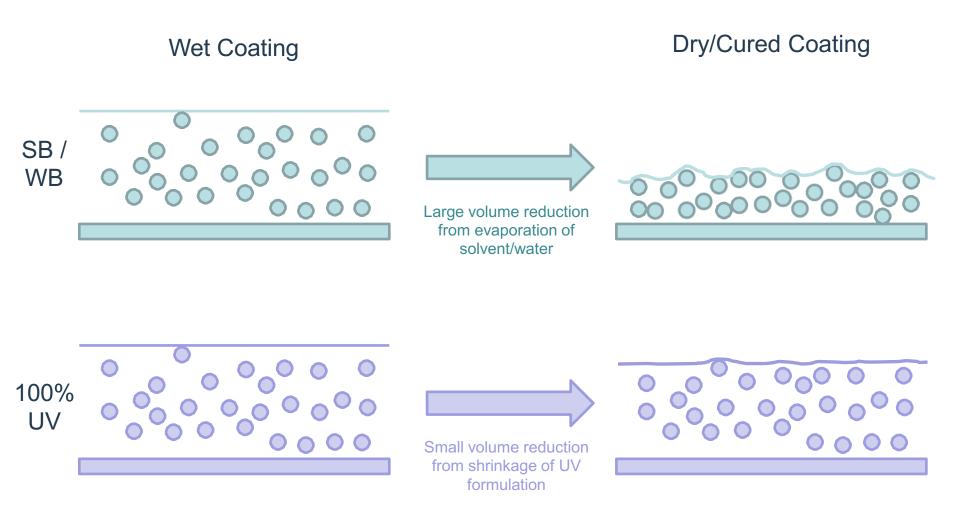
Advantages of 100% Solids UV Curable Systems

- Productivity, Productivity, Productivity
 - Seconds to cure vs. minutes or hours
- Lower Overall Cost (per cured part)
 - 100% solids, cure speed, recycling of coating, etc.
- Single component formulas
 - Eliminates mixing errors found in 2 component systems
- Regulatory Concerns (VOC emission)
 - Avoid solvent use in most cases
- Smaller equipment footprint
 - Less floor space needed
- Energy costs

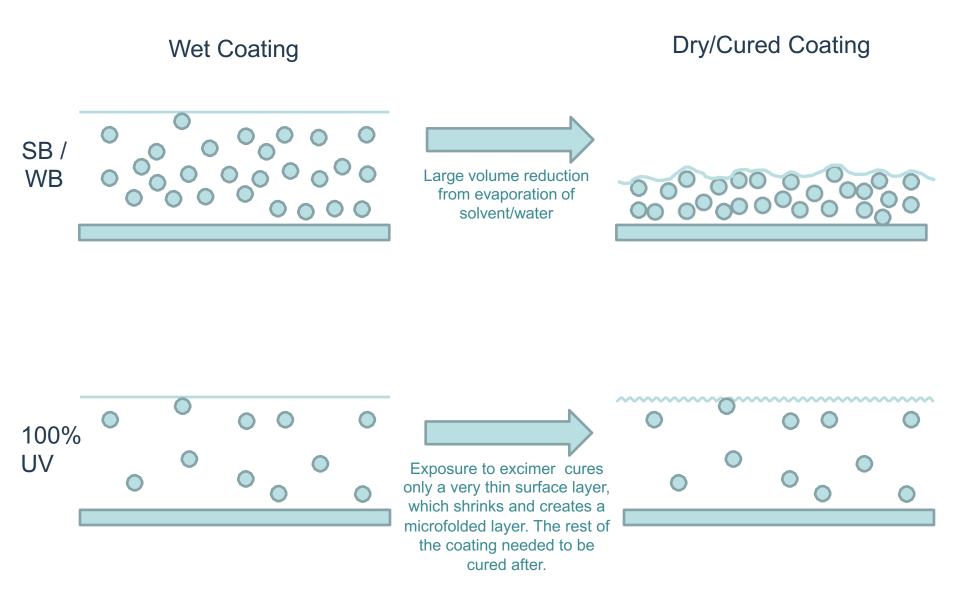
Excimer Lamp Technology


- Monochromatic irradiance centered at 172 nm (VUV)
 - Other wavelengths possible using different gas, e.g. KrCl (222nm) or XeCl (308nm)
- Inert atmosphere required
 - 5-50ppm O₂

Excimer Lamp Technology



• Excimer line in Pilot Hall


Matting: Gloss vs. Matte Coatings

Matting: SB/WB vs. 100% Solids Formulation

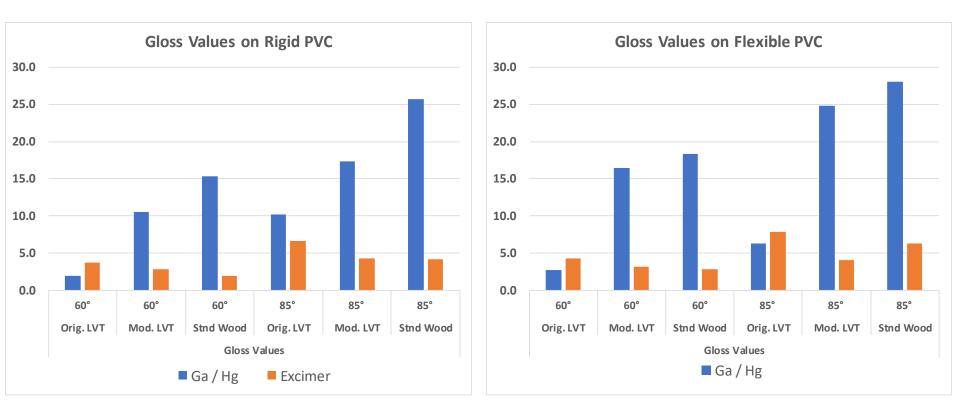
Matting: SB/WB vs. Excimer Cured 100% Solids

Formulations for Excimer vs. Hg Cure on LVT

Raw Material	Function	Original LVT	Modified LVT	Stnd Wood Ctg
ALUA 1	Film properties – hardness	14.0		
ALUA 2	Film properties – toughness	11.9	16.4	
ALUA 3	Film properties – hardness		16.4	
ALUA 4	Film properties – toughness		5.5	
ALUA 5	Film properties – toughness			29.3
PEA 1	Film properties – hardness			9.8
TPDGA	Viscosity control			41.1
HDDA	Viscosity control	28.0	18.6	
ΤΜΡΤΑ	Viscosity control, XLD	25.4		
Diluent 1	Viscosity control, flexibility		10.9	
Diluent 2	Viscosity control, hardness		5.5	
Photoinitiator 1	Cure	3.4	4.4	2.9
Photoinitiator 2	Cure			2.0
Silicas	Gloss control	8.5	10.9	9.8
Waxes	Gloss control	6.3	8.2	2.0
Additives	Flow and leveling, wetting, dispersion	2.5	3.2	3.3

Note: Silica, waxes and additives are not the same for each formula

Formulations for Excimer vs. Hg Cure on LVT


	Original LVT		Modified LVT		Stnd Wood Ctg.	
Flexible PVC	Gloss Values					
	60°	85°	60°	85°	60°	85°
Ga / Hg	2.7	6.3	16.4	24.8	18.3	28.0
Excimer	4.3	7.8	3.2	4.0	2.8	6.3
Rigid PVC	Gloss Values					
	60°	85°	60°	85°	60°	85°
Ga / Hg	1.9	10.2	10.5	17.3	15.3	25.7
Excimer	3.7	6.6	2.8	4.3	1.9	4.2

Ga / Hg – Cure using 100 WPI Ga followed by a 200 WPI Hg lamp at 25

Excimer - Cure using excimer lamp at 65 fpm followed by 200 WPI Hg lamp at 25 fpm

Coat Weight - Application by roller coater: 6-10g/m² estimated coating weight

Formulations for Excimer vs. Hg Cure on LVT

Ga / Hg – Cure using 100 WPI Ga followed by a 200 WPI Hg lamp at 25 Excimer - Cure using excimer lamp at 65 fpm followed by 200 WPI Hg lamp at 25 fpm

Coat Weight - Application by roller coater: 6-10g/m² estimated coating weight

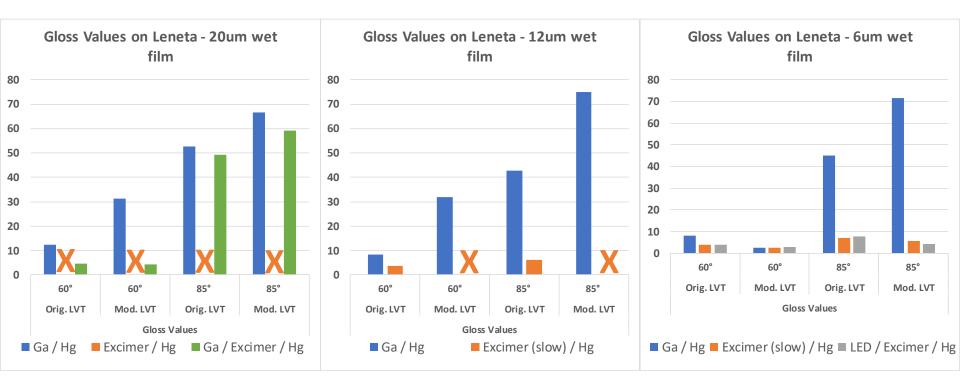
Formulations for Excimer vs. Hg Cure at Different DFT

	Original LVT		Modified LVT		
	Gloss Values				
Leneta - 20um wet	60°	85°	60°	85°	
Ga / Hg	12.5	52.6	31.15	66.65	
Excimer / Hg	Ice flowers		Ice flowers		
Ga / Excimer / Hg	4.75	49.4	4.25	59.2	
Leneta - 12um wet	60°	85°	60°	85°	
Ga / Hg	8.25	42.7	31.8	74.9	
Excimer (slow) / Hg	3.75 6		Ice flowers		
Leneta - 6um wet	60°	85°	60°	85°	
Ga / Hg	8	45.15	2.6	71.45	
Excimer (slow) / Hg	3.9	7.2	2.6	5.6	
LED / Excimer / Hg	4.1	7.6	2.75	4.35	

Ga / Hg – Cure using 100 WPI Ga followed by a 200 WPI Hg lamp at 25

Excimer / Hg - Cure using excimer lamp at 65 fpm followed by 200 WPI Hg lamp at 25 fpm

Ga / Excimer / Hg – Cure using 100 WPI Ga lamp at 65 fpm then excimer then 200 WPI Hg at 25 fpm


Excimer (slow) / Hg – Cure using excimer lamp at 32 fpm followed by 200 WPI Hg lamp at 25 fpm

LED / Excimer / Hg – Cure using 395nm LED at 65 fpm then excimer at 65 fpm then 200 WPI Hg at 25 fpm

Formulations for Excimer vs. Hg Cure – "Ice Flowers"

Formulations for Excimer vs. Hg Cure at Different DFT

Ga / Hg – Cure using 100 WPI Ga followed by a 200 WPI Hg lamp at 25

Excimer / Hg - Cure using excimer lamp at 65 fpm followed by 200 WPI Hg lamp at 25 fpm Ga / Excimer / Hg – Cure using 100 WPI Ga lamp at 65 fpm then excimer then 200 WPI Hg at 25 fpm Excimer (slow) / Hg – Cure using excimer lamp at 32 fpm followed by 200 WPI Hg lamp at 25 fpm LED / Excimer / Hg – Cure using 395nm LED at 65 fpm then excimer at 65 fpm then 200 WPI Hg at 25 fpm

Formulations for Excimer vs. Hg Cure

- Resilient flooring coated with formulation based on ALUA 2, ALUA 3, ALUA 4
- Left side of each picture shows a piece of coated PVC cured using Hg lamp
 - 60° gloss = 28.5 / 85° gloss = 54.4
- Right side of each picture shows a piece of coated PVC cured using Excimer + Hg
 - 60° gloss = 3.0 / 85° gloss = 4.2

Formulations for Excimer vs. Hg Cure – Film Properties

	Control	А	В	С
ALUA 5	41	41	41	41
DPGDA	55	55	55	55
Photoinitiator 1	4	4	4	5.2
Nano-composite UA		10		
Silicone acrylate			1	
6f ALUA				40

Cure :

- 1. Pre-gelling with 40W Ga (10m/min)
- 2. Excimer (20m/min) 40% output
- 3. Either UV or EB for final cure (next slide)

Formulations for Excimer vs. Hg Cure – Film Properties

	А	В	С	D	
Final cure 1: 10m/min 120W Hg					
Gloss (60° / 85°)	3.1 / 17.4	2.9 / 19.3	1.5 / 11.4	2.5 / 16.5	
Marring	na	Slightly poorer	Slightly poorer	Slightly poorer	
Coffee	5	5	5	5	
Mustard	5	5	5	5	
Final cure 2: EB 250kV – 5Mrad					
Gloss (60° / 85°)	2.8 / 14.0	1.9 / 13.1	1.3 / 8.0	2.2 / 14.3	
Marring	na	Same or better	Same or better	Same or better	
Coffee	5	5	5	5	
Mustard	5	5	5	5	

- All coatings showed excellent stain resistance to mustard and coffee
- Mar resistance was slightly poorer with UV cure as final step
- Mar resistance could be improved by using EB cure as final step

Conclusions and Observations

- Inert Excimer cure as positive effect on stain resistance
- Including Excimer lamps in cure process decreases gloss of final coating
 - Standard UV cure: 15-18 gloss at 60°
 - Matted directly with the Excimer followed by Hg lamp: gloss 1-3.
- Inert atmosphere required (5-50ppm O₂)
- Stain resistance may be increased (inert atmosphere). Unfortunately, not iodine stain
- Pre-gelling is needed in most cases.
- Post cure is a must by UV or EB cure: often short open time.
- Every 100% UV recipe has is preferred settings:
- Coatings below gloss 5 have week marring resistance.

Acknowledgements

Guido Vanmeulder (Drogenbos, Belgium)

19 March 2020

Thank you Visit allnex at Booth #301

Tong Wang tong.wang@allnex.com (770) 280-8035 Jonathan Shaw jon.shaw@allnex.com (770) 280-8370

www.allnex.com

disclaimer

Disclaimer: allnex Group companies ('allnex') decline any liability with respect to the use made by anyone of the information contained herein. The information contained herein represents allnex's best knowledge thereon without constituting any express or implied guarantee or warranty of any kind (including, but not limited to, regarding the accuracy, the completeness or relevance of the data set out herein). Nothing contained herein shall be construed as conferring any license or right under any patent or other intellectual property rights of allnex or of any third party. The information relating to the products is given for information purposes only. No guarantee or warranty is provided that the product and/or information is adapted for any specific use, performance or result and that product and/or information do not infringe any allnex and/or third party intellectual property rights. The user should perform his/her own tests to determine the suitability for a particular purpose. The final choice of use of a product and/or information as well as the investigation of any possible violation of intellectual property rights of allnex and/or third parties remains the sole responsibility of the user.

Notice: Trademarks indicated with [®], [™] or * as well as the allnex name and logo are registered, unregistered or pending trademarks of Allnex Netherlands B.V. or its directly or indirectly affiliated allnex Group companies.

©2020 allnex Group. All Rights Reserved.

