

Hybrid Radiation Curing – UV, LED and Excimer

Chris Davis: Head of Sales Industrial Systems T: 630 561 2024 chris.davis@usa.ist-uv.com

IST METZ – Introduction

- IST METZ GmbH, Nürtingen, Germany
 - → "Made in Germany"
- Founded in year 1977
- Market leader with over 13,000 UV installations Worldwide
- Approx. 350 (IST METZ)
- Approx. 600 (IST METZ Group)
- 14 Subsideries around the World.

IST - Product Snapshot - ENERGY IN LIGHT

Water and Air-cooled UV Lamps

Water and Air-cooled LED Systems

Excimer systems

IR Systems

Combination of ALL the above

Examples of Radiation Curing Applications

- Technical Coatings
- Inks
- Adhesives
- Composites
- Silicone/Release
- Cleaning
- Combi Curing Systems ... UV/LED/IR/Excimer

UV & LED Fields of Application - Examples

Graphic Arts Industry

- Offset
- Rotogravure
- Flexo
- Screen printing
- Pad printing
- Inkjet
- Letterpress

Converting

- Optical Functional Films
- Displays
- Siliconization
- Hotmelt-PSA
- PVC flooring
- Lamination of webs and plastics
- Scratch resistant coating of films

Industrial Applications

- Automotive parts
- UV PVD processes
- Cosmetic industry
- Anti-corrosion on metal
- Adhesives & Encapsulations
- UV Pretreatment & cleaning
- Furniture & flooring
- Telecommunication
- Coil Coating
- Composites
- Electronics
- Industrial Inkjet
- Rapid Prototyping
- Air & Water treatment
- Cups, tubes and cans (RIM)

Traditional UV Curing – Typical in Industrial Application

- Typical water-cooled UV lamp output determined by bulb dopant and reflector.
- Typical widths between 10" to 96"
- Different variations of mounting solutions.
- Integrated UV measuring
- Inertisation common (N2)
- Closed loop power control for precise curing.

Traditional UV Curing – Focus and Distance

... is about how to guide the UV light from the UV lamp to the substrate.

No reflector = more than 50% loss of UV light

Heat removal for heat sensitive substrates

-> Cold Reflector

UV Output - Dopant

Typical characteristics for standard Hg lamp according to [Lambrecht 1999]

Dose & Intensity – KEY Parameters in UV Curing

- Intensity (Peak) in mW/cm²
- Dose (energy density) in mJ/cm²
- Both are defined in UVC, UVB and UVA ... and Dose has a velocity value given.
- Both can be measured with a radiometer (EIT Power Puck).
- Type of reaction free radical or cationic will also define your UV system configuration.
- UV Output is <u>NOT</u> measured in Watts/inch ... this is INPUT!!!

UV Application Example – UV Acrylates -> Tapes

LED – UVA Alternative

- Active UV Band
 - •UVC Short Wavelength, high energy ... creates surface characteristics
 - •UVA Opaque/pigmented coatings, long wavelength with better penetration.

LED – UVA Alternative

- → LED is monochromatic (steep bell curve) with no IR content web facing.
- → UV alternative formulations are being developed
- → Less energy costs.
- → Smaller footprint.
- → Immediate cycle times ... No warm up.
- → When comapring with UV, ROI needs to be carefully reviewed.
- → Hybrid UV/LED/Excimer available.

LED – Application Example -> Adhesive

Dose & Intensity – KEY Parameters in LED Curing

- Intensity (Peak) in mW/cm²... this is measured at the emitting window
- Dose (energy density) in mJ/cm² ... size of window has an effect.
- Both can be measured with a radiometer (EIT Power Puck)... configured for LED.

Excimer Technology – 172 nm

- Lamp lengths 375 2300mm
- Power output 5W/cm -> 1 kW
- Homogenity over lamp length > 95%

Excimer Application – Matt Coatings

- Pre-curing: UV Excimer (172 nm) in inerted atmosphere
- Curing: UV medium pressure lamp (full spectrum) in inerted atmosphere (N2)
- No matting agents needed.
- Gloss level: < 5 gloss units

Excimer Application - Cleaning

Hybrid Platform – Application Example: Tacho Discs.

- Combination of excimer and UV
- Possible to add LED

Hybrid Technology Platform

- □ Basic principle combining the best properties of energy and output.
- ☐ In summary:
 - UV Broadband output, dopant determines band emphasis (UVC, UVB, UVA). Complex system with heat load. High output at distance.
 - LED Monochromatic output in UVA, no heat or ozone. Simple set-up. Lacks energy for surface cure. Good for through cure.
 - Excimer 172 nm only. High energy output (7.2 eV!). Requires N2. Offers alternative to complex and expensive formulation/chemistry. Also offers surface modification capability. Material needs to be close to lamp.

Process Evaluation & Application Know-How

- → Process evaluation technical compatibility.
- → Develop and advise new applications and technologies Resources???
 - Process knowledge transfer ... Training, workshops, tribal knowledge exchange, lab trials, material qualification and cure capacity, etc.
- → Application equipment, production line (NEW OR EXISTING), UV/LED/Excimer requirements ...
- → Capex and Opex, mulliple factors.
- → Transition of materials, formulation, personnel CULTURE!!!!

... And Finally ...

- ❖ Over forty years of Industrial Experience with radiation curing applications and chemistries
- ❖ In-house Lab with IST Specialists available for development and application trials
- Develop and advise new applications and technologies
 Wide selection of UV and LED types, as well as HYBRID.
- Associations, collaborations and partnerships throughout industry and acamedmia <u>Access to Knowledge!</u>
- Process evaluation
- Long term technology partner

Thank you for your attention and interest!

Chris Davis: Head of Sales Industrial Systems T: 630 561 2024 chris.davis@usa.ist-uv.com