

UV Excimer: Latest Developments

What is common?

UV Light sources

Excimer

MP Mecury Lamp

UV LED

Excimer – Adapted UV Spectrum

- Lamp lengtht: 120 mm 2300 mm
- Power: Approx. 5W/cm, max. 1 KW,20-100% power adjustment
- Efficiency: approx. 40%
- FWHM: approx. 14 nm
- Homogenity over lamp length: >95%
- Energy loss: 40 mm on each side

Excimer – Adapted UV spectrum

Principle setup of XERADEX® lamps.

Principle setup of XERADEX® lamps.

- Dielectric barrier discharge (DBD) reaction with quarz bulb as a dielectric barrier and the gas filling as discharge medium.
- Cooling needed for power levels at 5 W/cm.
- No cooling needed for lower power levels< 2 W/cm.

Application – Matting Application

Application – Matting

- Alternative: pre-gelation for pigmented coatings or thick clear coatings
- Matting: UV-Excimer (172 nm) in inerted atmosphere
- Curing: UV medium pressure lamp (full spectrum) in inerted atmosphere
- No matting agents needed.
- Gloss level:
 - Wood Foil: 2-3 gloss units
 - PVC: 5-10 gloss units

UV Excimer (for creating matt effects)

Nitrogen flow over nozzles and Excimer lamps

UV Excimer (for matt effects)

Application: UV-Cleaning - Principle

Concept of optical cleaning

Application: UV Cleaning - Basics

Energy of excimer 172 nm:

→ 7,2 eV

→ 695 kJ/mol

Energie	eV	kJ / mol	kcal / mol	cm ⁻¹
1 eV	1	96,485	23,06	8065,5
1 kJ / mol	0,01036	1	0,239	83,593
1 kcal / mol	0,04336	4,184	1	349,76
1 cm ⁻¹	1,24 · 10-4	0,01196	2,859 · 10 ⁻³	1

Abhängigkeit der mittleren Bindungsenergie von der Bindungslänge[2]

Bindungslänge d in pm, Bindungsenthalpie ΔH in kJ pro mol

Halogene untereinander		mit Wasserstoff		mit Kohlenstoff		mit Sauerstoff		gleiches Element						
Bindung	ΔH	d	Bindung	ΔH	d	Bindung	ΔΗ	d	Bindung	ΔH	d	Bindung	ΔH	d
F-F	159	142	H-H	436	74	C-C	348	154	N=O	607		H–H	436	74
CI-CI	242	199	H-C	413	108	C=C	614	134	0-N	201	136	N-N	163	146
Br–Br	193	228	H-0	463	97	C≡C	839	120	0-P	335	154	N=N	418	125
I-I	151	267	H-N	391	101	C-H	413	108	O-F	193	142	N≡N	945	110
Br-Cl	219	214	H-P	322	142	C-O	358	143	O-CI	208	170	0-0	146	148
Br-F	249	176	H-S	367	134	C=O	745	122	O-Br	234		0=0	498	121
Br-I	178		H-F	567	92	C-N	305	147	0-1	234	1	P-P	172	221
CI-F	253	163	H-CI	431	128	C=N	615	130				S-S	255	205
CI-I	211	232	H-Br	366	141	C≣N	891	116						

H–I

298 | 160

Conclusion for UV cleaning

Reduction of contact angle will be improved

- Optimum concentration of activated oxygen
- Low distance from lamp to glass
- High UV dose

For UV cleaning:

- Small gas flow necessary to evacuate contaminents.
- Overlapping of lamps has to be considered
- Cleaning effect causes on a combination of UV radiation and optimum oxygen concentration.

UV Excimer (for cleaning)

Additional: Gas removal

channels

Why Inertisation?

Excimer – Oxygen /Ozone control

nitrogen supply

nitrogen supply

Gas flow

Ozone value or

Oxygen value

Valve control

Patent pending!

Excimer @ 1 mm distance

500 ppm O₂

Excimer – Matting / Cleaning version

Matting Version:

- Inerted version
- Oxygen measurement and control
- Approx. 350 ppm O2
- Passive dust collecting channel at outlet
- High uniformity

Cleaning Version

- Inerted version
- Ozone measurement and control
- Approx. 100-2000 ppm O2
- Active gas extraction (Ozone)
- High power
- N2 conditioner

-> application specific system design

Excimer Lab System - Example

Thanks for your attention