

Study on Acrylic Oligomers for UV Adhesives Application

Andy ZHANG & Willy DU Wraio Chemicals, CHINA Presented by Willy DU

Profile of Wraio

Background Information

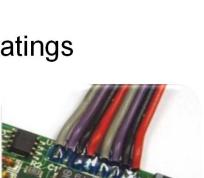
Oligomers for UV Adhesives

R&D Case Study

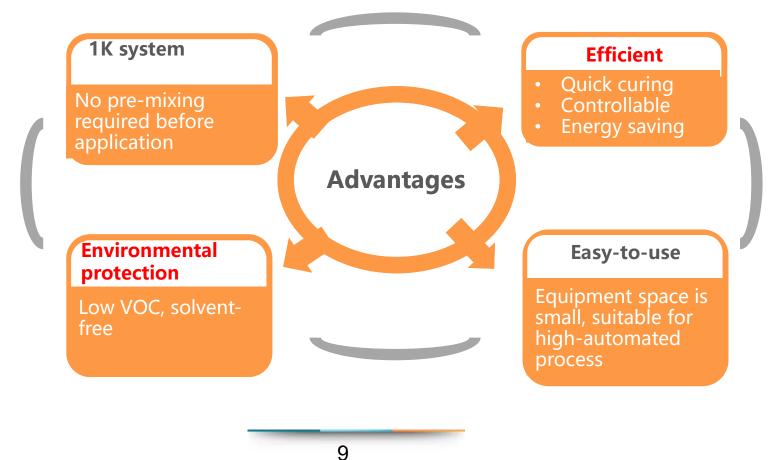
....

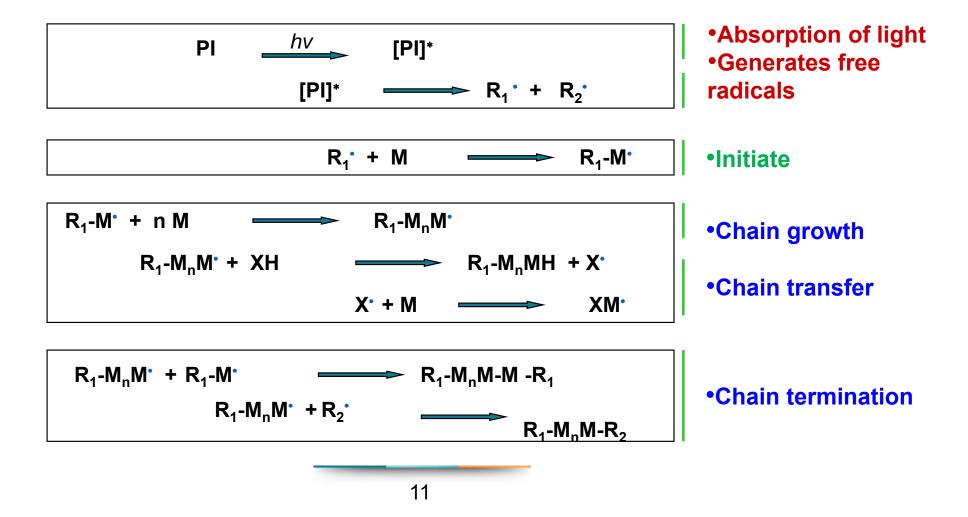
PART 01 Profile of Wraio

- 2008: Start up as a trading company of UV raw materials
- 2011: Establishment of Nanjing Technical Center
- 2012: Merging UG Chemicals
- 2014: Running of 1st factory of oligomers in Jiangsu, CHINA
- 2019: Running of 2nd factory of oligomers in Anhui, CHINA


- UV Monocoat Notebook
- UV PVD coatings Mobile phones
- UV Coatings for Headlamp of vehicle
- UV Adhesives Electronic products
- UV Nail Polish
- UV Coatings for Optical film (Hard coatings, BEF)
- UV Inks (LED)
- UV Matte coatings for PVC flooring
- •

PART 02
Background
Information


- Glass/Plastic/Metal structural bonding
- ►LCD pin fixing
- Medical device bonding
- Spot protection line, reinforcement
- Circuit board coatings / conformal coatings
- Potting / sealing / UV sealant



- Right source and enough intensity of light are required
- Limitations on substrates
 - The substrates have to be transparent on at least one side
 - Application to complicate-shape parts could be poor cured, other complementary curing methods could be required
- Curing equipment investment
- Mercury lamp produces ozone, exhausting system is necessary

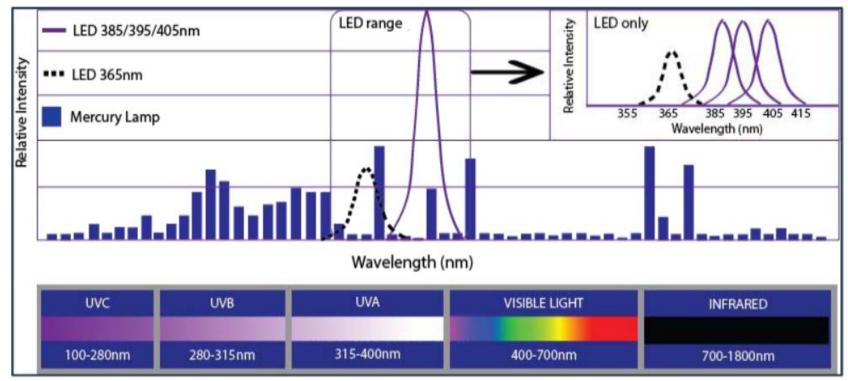
Mechanism of Free Radical Photocuring Polymerization

UV curing applications normally use middle and near-ultraviolet light, usually subdivided to UVA, UVB and UVC

♦UVA(315~400nm)

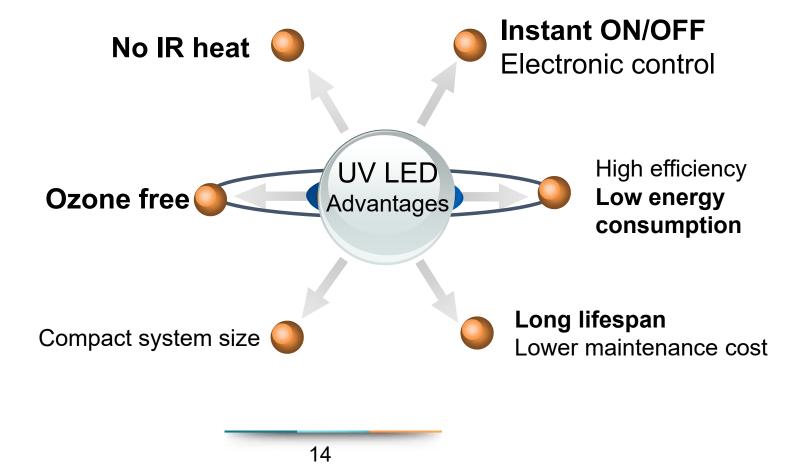
Lower energy, deep curing, glass bonding

♦UVB(280~315nm)

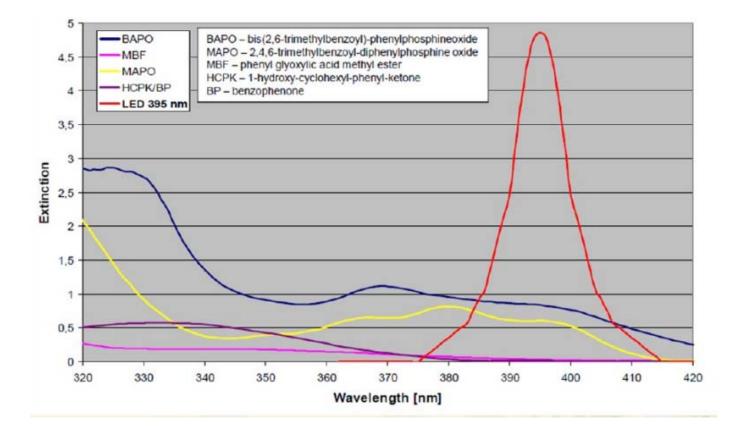

Higher energy, surface curing, sealing/coating

♦UVC(200~280nm)

High energy, surface debonding, sterilization and disinfection



Conventional High Pressure Mercury Lamp vs. UV LED


*courtesy of Phoseon Technology

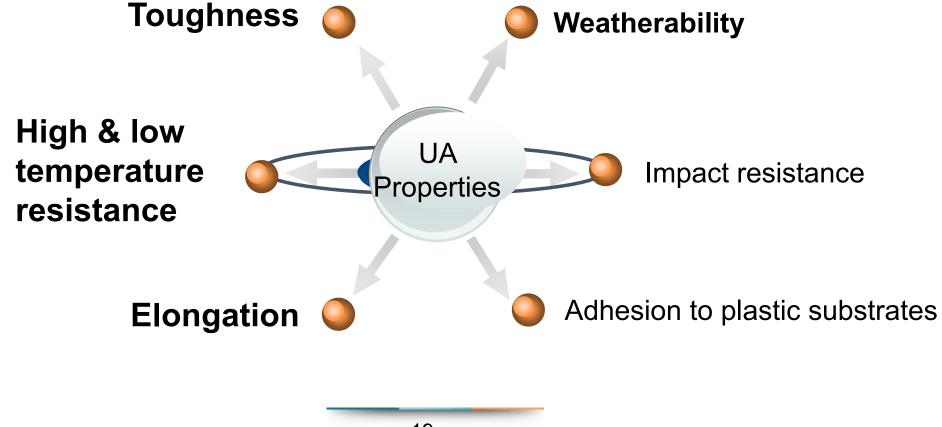
The Absorption Wavelength of Several Photoinitiators

Choose appropriate photoinitiators to match different light sources

15

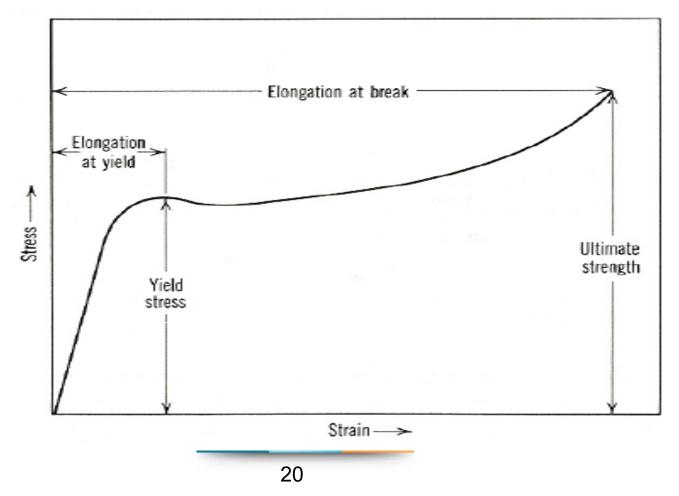
UV Adhesive Development Trend

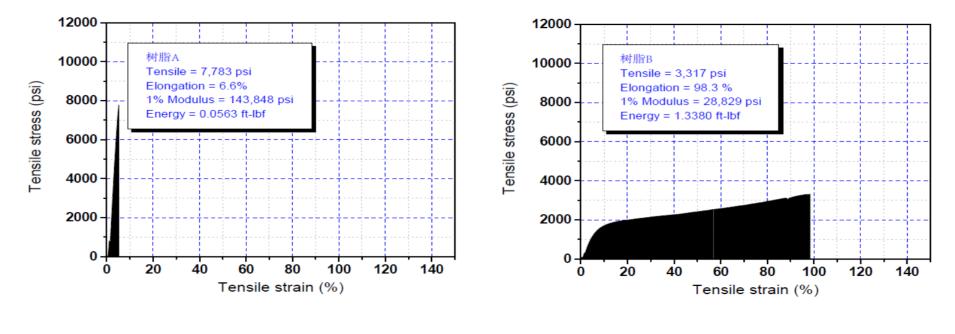
- Low energy, fast curing: high pressure mercury lamps are being replaced by UV LED
- Hybrid Curing (Photo + thermal / moisture): ODF frame glue, conformal coating
- Environment friendly: low VOC
- High cohesion and adhesion: replacing traditional structural adhesive applications (fast cure, low temperature, energy saving and environmental-friendly)
- Low odor, low skin irritation
- Universality: more diversified substrates(plastic, metal, glass, etc.)



PART 03 Oligomers for UV Adhesives

Pros & Cons of Different Types Oligomers


Туре	Pros.	Cons.
Epoxy Acrylate	Fast curing, chemical resistances	Poor weatherability, brittle
Urethane Acrylate	Good comprehensive properties, cohesion, and elongation	Higher cost
Polyester Acrylate	Low viscosity, good performance-to- cost ratio, faster curing	Low cohesion
Polyether Acrylate	Low viscosity, flexibility	Low mechanical strength
Full Acrylics Acrylate	Adhesion, flexibility	Slow curing, low mechanical strength
Thiol Modified Resin	non-sensitive to oxygen inhibition	Smell, stability



Stress-strain curve

Hard and strong

Soft and medium toughness

UV Adhesive Resin Performance Test

Major parameters

- **Curing speed** surface & deep curing
- Hardness Shore hardness
- **Elongation** pure resin strain
- Bonding property strain shear, compress

shear

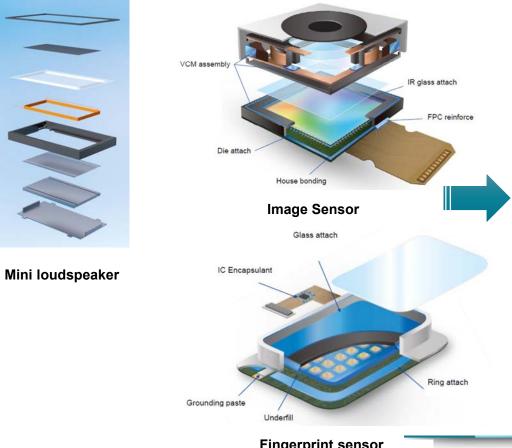
- Aging test high temperature & humidity, boiling water resistance, cold and hot cycle
- Water absorption weight change after water boiled
- Modulus -mechanical property
- **Tg** effects on bonding properties, strength

IPDI vs. HMDI

Product Structure	Hardness	Tensile strength, MPa	Elongation at break, %	Shear strength PC/PC MPa	Water absorption %
HEA-[IPDI-(Polyol 1)]4-IPDI-HEA	D60	17	30	8.0	1.0
HEA-(IPDI-Polyol 2)4-IPDI-HEA	D55	15	120	7.5	0.9
HEA-[HMDI-(Polyol 3)]4-HMDI-HEA	D65	20	200	9.5	1.4
HEA-(HMDI-Polyol 4)4-HMDI-HEA	D60	19	180	8.5	0.7

Product Structure	Hardness	Tensile strength MPa	Elongation at break %	Shear strength PC/PC MPa	Water absorption %
HEA-[IPDI-(Polyol 1)]4-IPDI-HEA	D60	17	30	8.0	1.0
HEA-[IPDI-(Polyol 1)]7-IPDI-HEA	D55	16	55	8.5	0.9
HEA-[HMDI-(Polyol 5)]4-HMDI-HEA	D65	22	185	9.0	2.0
HEA-[HMDI-(Polyol 6)]4-HMDI-HEA	D62	18	240	8.5	1.4

HEA vs. CA vs. HBA

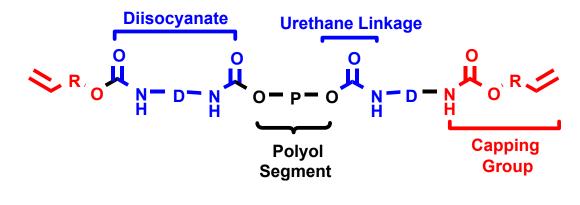

Serial number	Hardness	Tensile strength MPa	Elongation at break %	Shear strength PC/PC MPa	Water absorption %
HEA-[IPDI-(Polyol 1)]4-IPDI-HEA	D60	17	30	8.0	1.0
HBA-[IPDI-(Polyol 1)]4-IPDI-HBA	D55	15	45	7.0	1.1
CA-[IPDI-(Polyol 1)]4-IPDI-CA	D55	14	60	5.5	0.8
HEA-[HMDI-(Polyol 5)]4-IPDI-HEA	D65	22	185	9.0	2.0
HBA-[HMDI-(Polyol 5)]4-IPDI-HBA	D60	20	200	9.0	1.8
CA-[HMDI-(Polyol 5)]4-IPDI-CA	D55	17	230	8.5	1.8

PART 05 R&D Case Study

1st Case: Oligomers for UV Adhesives

UV Adhesives for Electronic Module

UV Adhesives for Plastics


Items and Requ	lirements	Main Properties
UV Lamp	Hg or LED	UV and visible light, fast curing
Minimum Curing Energy	1,200mJ/cm ²	Broad viscosity range for different applications
Tensile Strength, Mpa	18-20	Colorless clear, low odor
Elongation at Break	150-250%	Excellent bonding to plastics, especially PC and PMMA
Shore Hardness	60D-70D	Excellent aging resistant
LSS PC/PC, Mpa	10-12	performance

General Glass / Metal UV Adhesives

Items and Req	uirement	Main Properties
UV Lamp	Hg or LED	UV and visible light, fast curing
Minimum Curing Energy	500mJ/cm ²	Suitable viscosity and Ti for easy processing
Tensile Strength, Mpa	14-22	Colorless clear and low odor
Elongation at Break	150-250%	High bonding Strength for glass and other substrates(glass, metal, etc)
Shore Hardness	50D-60D	Excellent aging resistant
LSS Glass/Glass, Mpa	5-8	performance

Fingerprint sensor

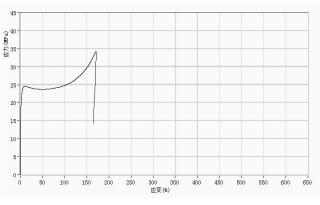
Properties Matrix - Urethane Acrylate

Polyester-UA

Synthesized with polyester polyol, adipic ester or polycarbonate ester type

High mechanical strength, elongation and modulus

Polyether-UA Synthesized with polyether polyol


Low cohesive energy. Excellent flexibility, low temperature resistance, hydrolysis resistance. Poor strength and heat resistance

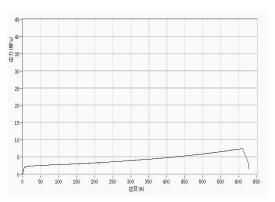
Performance	Modulus	Yield Stress	Break Strength	Elongation at break
Soft, weak	low	low	low	medium
Soft, tough	low	low	high	high
Hard, brittle	high	Very high	medium	Low
Hard, strong	medium	high	high	Medium
Hard, tough	medium	medium	high	high

Customized Oligomers with SPF- General Purpose UV Adhesives for Plastics

Cure	Water	Elong.	Tensile	Deep cure			LSS	/MPa	
speed mJ/cm²	absorp. %	at break%	strength MPa		& humity resis.	PC/PC	PC/PVC	PC/ABS	PC/Glass
800	1.74	220	36.2	3.4mm	Excellent	9.5	8.5	7.1	4.2
3.5	4.5	4	5	3	5	4	4	4	3

Grade: 0~5, higher is better

FSP8674(Polyester-UA)


SPF	
Comp.	%
FSP8674	50-60
DMAA	5-10.0
IBOA	20-30
MMA	2-5
184	2.5
TPO	1.0
Additive	2-4
Total	100

		LSS/MPa
Substrates	RT	85℃ & 85% humidity for 48h
PC/PC	10.4	9.9
PC/PS	9.6	9.3
PC/PVC	9.2	8.8

Customized Oligomers with SPF- General Purpose UV Adhesives for Glass / Metal

Cure speed	Water	Elong.	Tensile	High temp.		LSS/	MPa	
mJ/cm ²	absorp. %	at break %	strength MPa	& humidity resist.	PC/PC	GL/GL	GL/AI	GL/SS
2500	1.82	600	8.2	Excellent	2.5	4.5	5.9	5.2
1	4.5	5	2	5	1	4	4	4

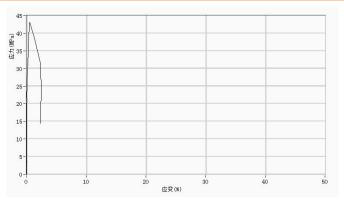
Grade: 0~5, higher is better.

FSP8054(Polyether-UA)

SPF					
Comp.	%				
FSP8054	30-40				
IBOA	45-55				
R9107	2.0				
AA	2-4				
184	2.5				
ТРО	1.0				
Additive	1.5				
Total	100				

	LSS/Mpa			
Substrates	RT	85℃ & 85% humidity for 48h		
Glass/Glass	5.2(Glass break)	5.1(Glass break)		
Glass/Al	6.2(Glass break)	6(Glass break)		
Glass/Steel	5.7(Glass break)	5.5(Glass break)		

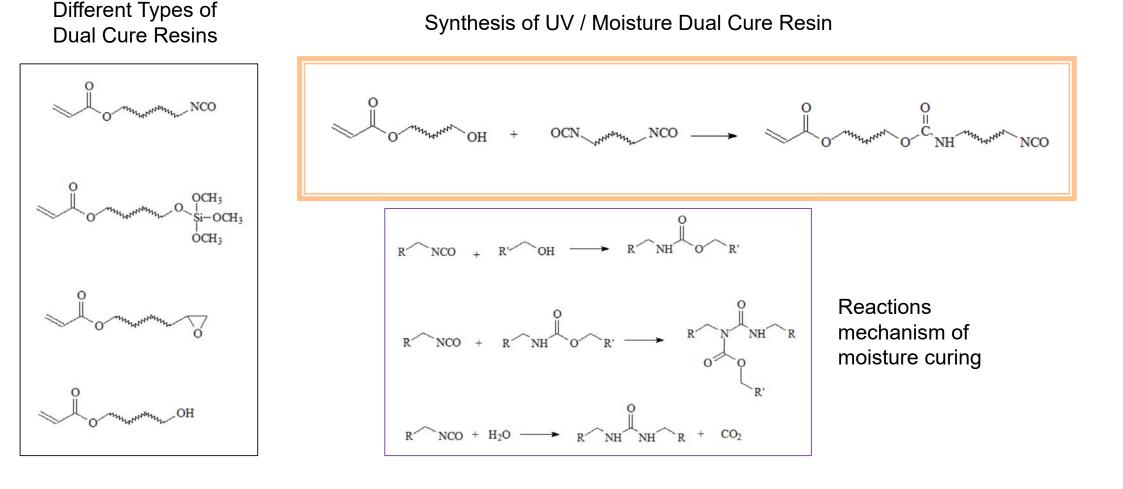
2nd Case: Oligomers for UV+Moisture Cured Conformal Coatings


	Moisture resistance	Salt resistance	Static resistance	Items and Requ	uirement	Main Properties
	roolotarioo		roolotanoo	Curing	UV + Moisture	 UV and moisture curing Low viscosity for conformal
		4 . 44		Minimum Curing Energy	2,000mJ/cm ²	coating and high viscosity & Ti for circuit board protection
	Y			Tensile Strength, MPa	10-15	with color changing
				Depth/um	50-100	Excellent protection for PCB
			Elongation at Break	50-150%	and electronic components, especially from moisture, salt	
Г			[]	Shore Hardness	70D-75D	fog, dust, temperature, etc.
	Oil resistance	Dust resistance	Temp. resistance	LSS Glass/Glass, MPa	5-10	

Customized UV Oligomer for Conformal Coatings

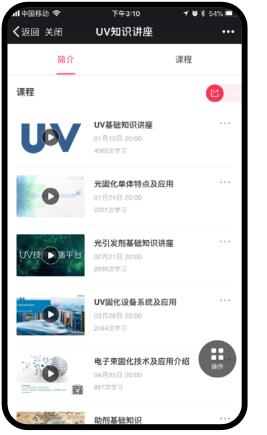
Shore Hardness	Cure speed (LED)	Boiling water resis.	Adhesion	Tensile strength	Toughnes s	Depth Curing	Yellowing	Pigment wetting
75D	<500 mJ/cm ²	85℃ 1h, 5B	PC,Glass 5B/4B	30.2MPa	Excellent	5.2mm	∆b=2.26	good
1-4	4	3	4	5	5	5	2	4
Crada: 0.E	higher is bett	~ ²						

Grade: 0~5, higher is better.



FSP8672

Start Point Formulation % Comp. FSP8672 30.0 THFA 15.0 IBOA 40.0 UV/Moisture Dual 12.5 Cure Resin (BASF) 184 2.0 819 0.5 合计 100.0


Test Result		
Visco., cps @ 25°C	500	
Cure energy, mJ/cm ²	1500	
Water absorp.%	2.2	
Cured depth	>7mm	
Adhesion	5B	
Hardness	D32	
Elongation at break, %	160	
Tensile Strength, MPa	6.2	

Customized UV / Moisture Dual Cure Resins for Conformal Coatings (Ongoing Project)

"Photocure New Materials" WeChat Official Account

山中国移动 穼	下午3:09	1 🗑 🖇 54% 🔳
く返回	UV前沿	
行业新闻	UV情报	热点技术
UV發流購招店	关于硫醇,你知道的够多 硫醇(Thiol)是一种包含巯基官制 英文单词thiol也来源于"thion"	能团的化合物。硫醇的
UVBRARS	含酞嗪酮结构环氧甲基 大连理工大学王锦艳教授等人 氧甲基丙烯酸酯(Epoxy Metha	,采用DHPZ制备了环
UV授木情报站	在近紫外和LED辐照下用 发光二极管(LEDs)由于其相对 [;] 势,包括更好的光输出、更高	于传统汞灯的一些优
い技術制設	N-取代马来酰亚胺对于♂ 澳大利亚昆士兰大学的LY Sha N-取代马来酰亚胺的光引发效	o等人,对于一系列的
UV#2/THATRIS	温度对光固化中溶氧所带 氧阻聚对于光固化反应有极大 合反应有着多方面的影响,那	的影响,由于温度对聚
UVERMERE	采用傅立叶红外对双键射 我们前期文章中提到了采用光 (Photo-DSC)来对光固化反应说	差示扫描量热仪
山、物本、新聞語、	采用石墨烯来改进UV固化 意大利都灵理工大学的Alessar 采用纳米片石墨烯来提升UV光	ndra Vitale博士等人对
	采用Photo-DSC对光固体	化反应的对比研究

光固化新材料

供UV从业人士关注的公众号

Thanks for Your Attention!

润奥化工 Wraio Chemicals

Willy DU / 杜鹏 E-mail: willy.du@wraio.cn Phone: +86-136-0276-7435

