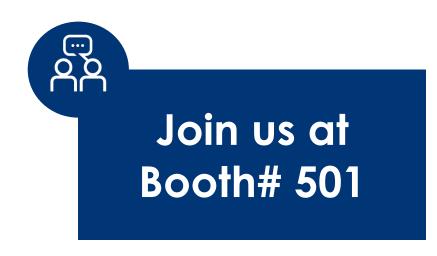
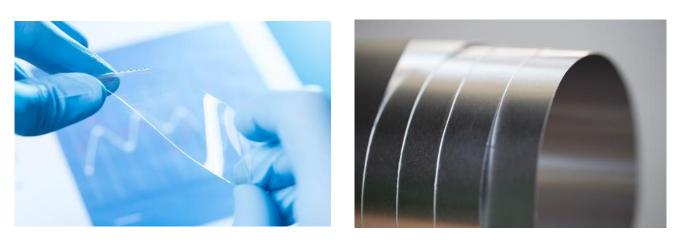
FOR ADHESION TO DIFFICULT SUBSTRATES

CHRISTOPHER MACNEILL, PH.D. RADTECH 2020


INNOVATING WITH YOU IN MIND

Download the PDF

Manjuli Gupta Jon Scholte Elaine Ruiz **Bill Schaeffer** * Mike Bailey **Don Herr** 🔅 Anna Johnson Chris Orilall

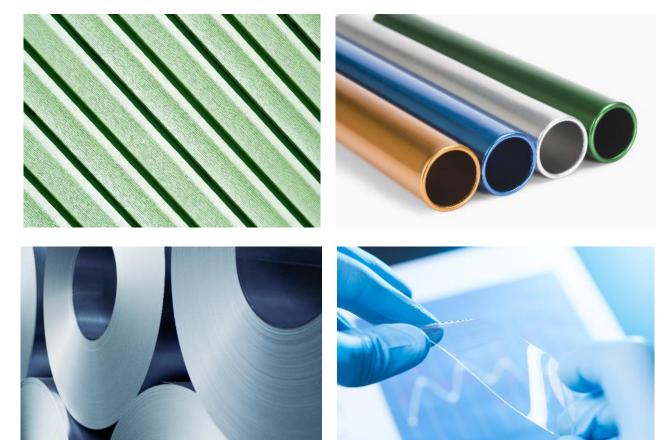

AGENDA

* Introduction

- Adhesion to Difficult Substrates
- Factors affecting adhesion
 - Substrate
 - Coating/adhesive
- Mechanisms of adhesion
- Adhesion to metal

Adhering metal to plastic Adhesion to plastic

- Swellable plastic
- Non-swellable plastic
- ** Summary



ADHESION TO DIFFICULT SUBSTRATES

- Adhesion is the most important property of any coatings application
- Strong adhesion to certain substrates can still be difficult
- Its important to a formulator to understand the factors that can affect adhesion
 - Coating/adhesive formulation architecture
 - Substrate architecture

* Coating/Adhesive

- Solubility parameter
- Shrinkage
- Surface Tension/Wettability
- Viscoelastic properties
- Coefficient of Thermal Expansion

🔅 Substrate

- Porosity
- Surface Energy
- Cleanliness
- Surface Treatments

Chemical Bonding

lonic, metallic, covalent bonding can occur between coating and substrate

Physical Adsorption

Van der waals, electrostatic, hydrogen bonding interactions

Interpenetrated network (IPN) Formation

Swelling substrate with reactive monomer

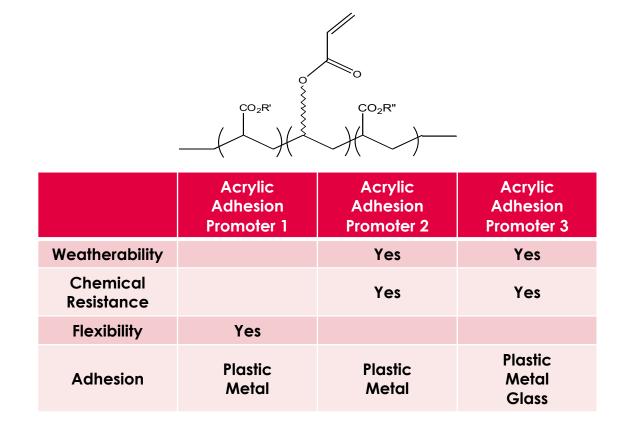
FORMULATING FOR ADHESION TO METAL

FORMULATING FOR ADHESION TO METAL

- Formulating for adhesion to metal is not as difficult as other substrates
- Maintained through a chemical and physical bonding mechanism
- Factors that influence selection of monomer/oligomers for coating
 - Abrasion resistance
 - Chemical resistance
 - Corrosion resistance
 - Weatherability

FORMULATING FOR ADHESION TO METAL

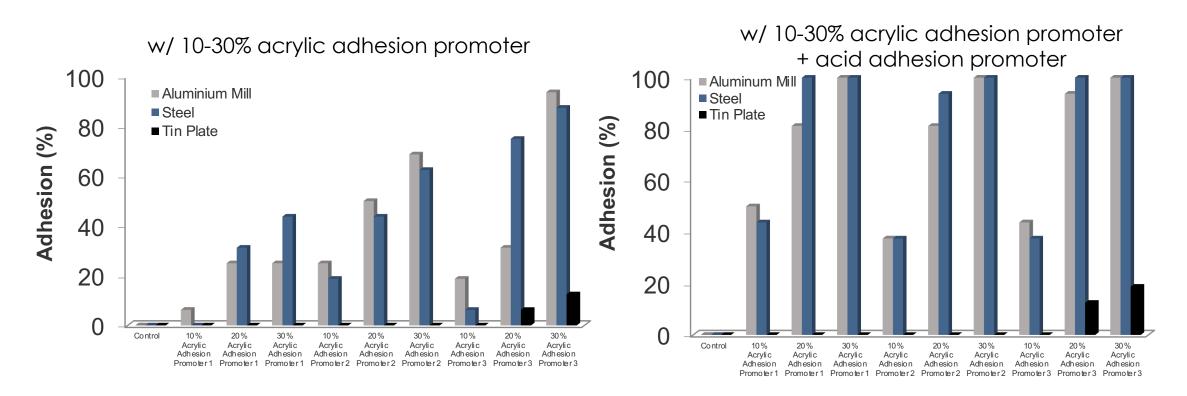
Base Formulation


Polyester Acrylate Oligomer	50.0%
🔅 3EO TMPTA	20.0%
🔅 DPGDA	12.5%
🔅 TPGDA	12.5%
🔅 Photoinitiator	5.0%

Application & Cure Conditions

2.5 wire bar, 5 microns
300 W/in. "H" Lamp, 100 ft/min

Substrates Tested


Mill finish Aluminum
Cold Roll Steel
Tin-Plated Steel

10, 20, 30% of three different acrylate adhesion promoters and one acid adhesion promoter were added to the base formulation

CROSS HATCH ADHESION TESTING (610 TAPE)

Acrylic adhesion promoters help lower shrinkage, more flexible
Additional advantage with acid adhesion promoter
Coatings showed improved chemical resistance (>200 MEK rubs) and weatherability with no loss in hardness

FORMULATING FOR ADHERING METAL TO PLASTIC

FORMULATING FOR ADHERING METAL TO PLASTIC

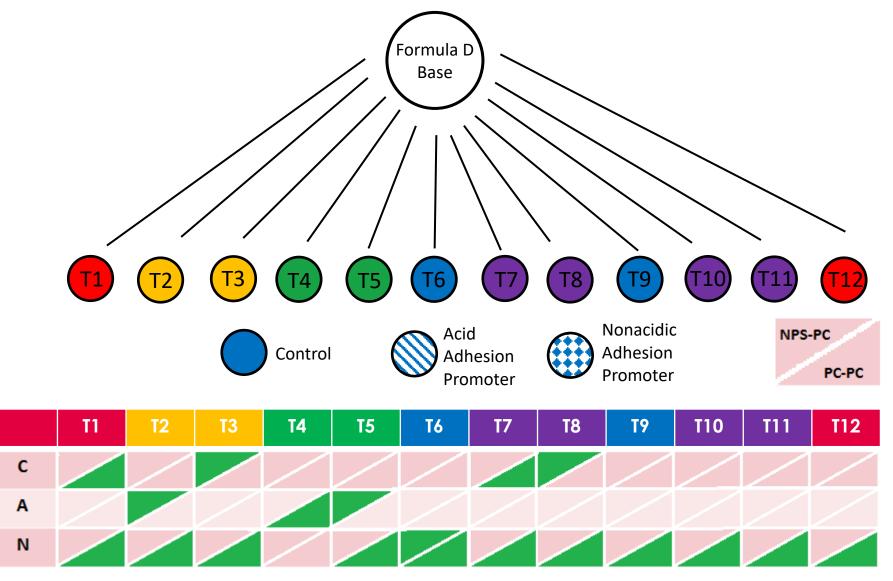
- May need to formulate an adhesive that binds two different substrates together
- Bonding plastic-to-plastic or metal-tometal can be much easier than bonding plastic-to-metal
- The type of plastic used can depend on the application

FORMULATING FOR ADHERING METAL TO PLASTIC

LED (385 nm) curable adhesive to bond both PC to PC and PC to NPS
Testing Reqs:

Test	Conditions	Value
Viscosity at 25°C	ASTM D1084	40-80 cP
Glass Transition Tempearture (T _g)	ASTM D1640-13	>85°C
Hardness (Shore D)	ASTM D2240	75
Lap Shear (PC to PC)	ISO 4587	15 Mpa
Lap Shear (PC to NiPS)	ISO 4587	10 MPa

Curing Conditions: 385 nm LED, less than 4s at 3 in. away from source


Five formulations targeting 70-80cP with high strength and adhesion

	Target	Formula A	Formula B	Formula C	Formula D	Formula E	
Viscosity @ 25°C	40-80cP	78	75	71	75	70	
Shore D Hardness	e D Hardness 80 ± 10 82		83	79	80	80	
Tensile Strength	Tensile Strength15 Mpa16.		26.1	21.6	25.9	25.4	
Elongation (%)	Elongation (%) - 11.6		12.1	10.2	10.7	12.2	
Modulus (Mpa)	Modulus (Mpa) -		337.9	316.5	332.3	366.1	
NPS Lap Shear Stress	10+ Mpa	23.3	22.8	23.5	34.3	10.7	
PC Lap Shear TO	15+ MPa	5.1	5.7		12.8		
NPS Lap Shear T=300hrs			1.9		13-15		

Formula D demonstrated the best potential for accelerated conditioning at 65°C/85% humidity

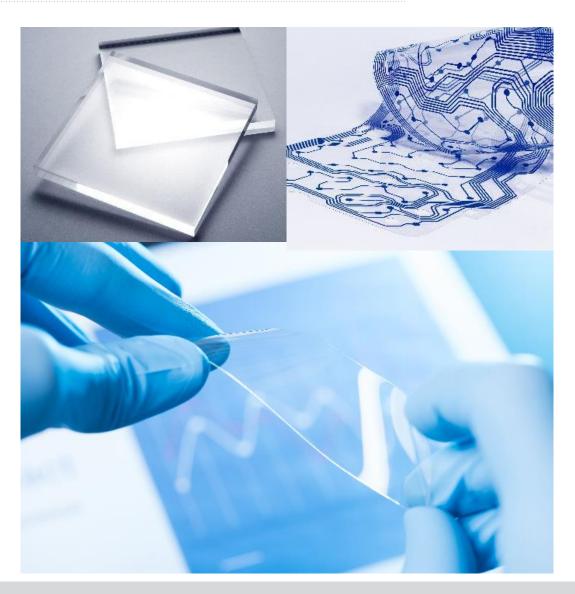
FORMULATING FOR ADHERING METAL TO PLASTIC: DOE STUDY

Multiple blends meet both of the technical requirements

- All formulations demonstrate good lap shear adhesion
- Additional adhesion promoters (both acidic and nonacidic) have been identified with on going tests

	T _g (1 Hz, 10 Hz)	Viscosity (25°C)	Lap Shear (PC:PC) t=0	Lap Shear (PC: NPS) t=0	
Formula 1	171°C, 163°C	69 cP	PC broke	13.1 MPa	
Formula 2	173°C, 172°C	78 cP	PC broke	20.4 MPa	
Formula 3	150°C, 148°C	77 cP	27.8 MPa	17.3 MPa	

FORMULATING FOR ADHESION TO PLASTICS

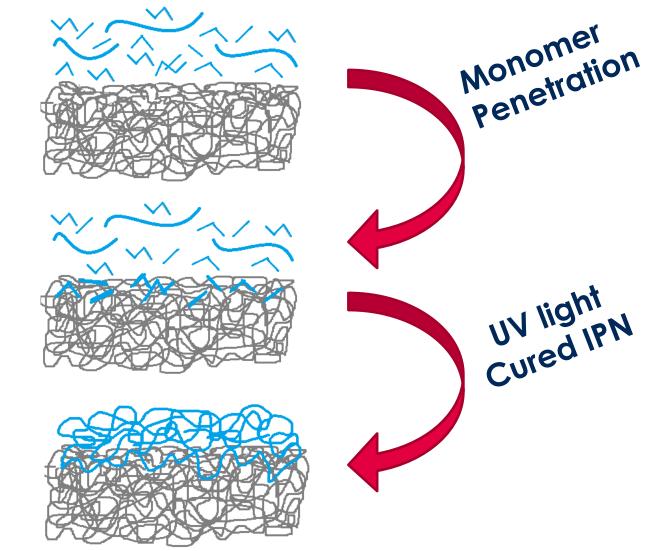


FORMULATING FOR ADHESION TO PLASTICS

Plastics can be difficult substrates to adhere to due to their low surface energy

* Formulations tactics

- 1) Reduce crosslinking density
- 2) Similar viscoelastic properties to substrate
- 3) Additives that lower surface tension
- 4) Good affinity to substrate



SWELLABLE PLASTICS - IPN FORMATION

Swellable Plastics include:

- PVC, Polycarbonate, Polystyrene
- Monomers can be utilized to decrease surface tension and viscosity to improve wetting
- Monomers can also associate with or swell the substrate surface

NON-SWELLABLE PLASTICS - POLYOLEFINS

POs undergo only a physical mechanism of adhesion

Two parameters contribute to the adherence of coatings on non-swellable plastics:

- 1) Coating chemistry
- 2) Thermodynamic work of adhesion

Formulation Tactics:

• Materials with good wetting and low shrinkage

Polymer substrates were gathered for adhesion study

* Several techniques used to evaluate substrate and coating

• FTIR, Contact Angle, DMA, Cross hatch adhesion

* Mixture of high and low SE substrates

• PS, PMMA, PE, PP

Substrate #	Composition qualifier by FTIR	Surface Energy (Dynes)	Contact Angle	Glass Transition Temperature (Tg, °C)	
1	90.26% Polystyrene	43	67	123 (Tension film)	
2 Side 1	93.4% Polyethylene	33	83	-114 (Tension film)	
2 Side 2	95.85% Polyethylene	44	66	-114 (Tension film)	
3	96.47% Polypropylene, isotactic	36	79	0	
4	90.65% Polystyrene	31	87	123	
5	94.96% Poly(methyl methacrylate)	41	72	132 (single cantilever)	

PLASTIC ADHESION STUDY: FORMULATION STRATEGY

- Starting Point formulations were made (Table 1)
- Clear coating applied by draw down (#10 wire bar, 1 mil thickness)
- Adhesion results for the base formulation indicates PE poses issues (Table 2)

Table 1

Product	Wt %
Aliphatic UA	10
Cycloaliphatic monoacrylate	87
PI	3

Table 2

Substrate	Adhesion %
1 (PS)	100
2 (PE)	50
3 (PP)	100
4 (PS)	100
5 (PMMA)	100

PRODUCTS EVALUATED

Description	Properties	Loading Wt%	
HMW Epoxy Acrylate	HAANA Elevible Oligemers limited by viscesity	5%	
Acrylated PEA adhesion promoter	HMW, Flexible Oligomers, limited by viscosity	570	
THFA		2007	
Alkoxylated THFA	High solvency monomers	20%	
Alkoxylated NPGDA		0097	
Aliphatic Diacrylate	non-polar monomers, linear	20%	
Cycloaliphatic Acrylate Ester			
CTFA	non polar monomore, ovolio	200	
Cycloaliphatic Acrylate	non-polar monomers, cyclic	20%	
ТМСНА			
2-PEA	Aromatic monomers	20%	
Chlorinated Epoxy Acrylate	Chlorinated oligomer, limited by viscosity	5%	
Urethane monomer	Low Tg monomer	20%	

ADHESION TESTING RESULTS

	HMW, Flexibl	e Oligomers	High solvenc	y monomers	Non-polar monomers, linear		Non-polar monomers, cyclic			Aromatic monomers	Chlorinated oligomer	Low Tg monomer	
Substrate # / type	HMW EA	PEA	THFA	Alk THFA	Alk NPGDA	AI DA	Cyclo AE	CTFA	CAA	ТМСНА	2-PEA	CI EA	UA
1 (PS)	100	100	100	100	100	100	100	100	100	100	100	100	100
2 (PE)	70	80	25	25	25	50	50	25	75	85	25	70	25
3 (PP)	90 - 95	100	95 - 100	100	25	25	85	50	100	100	100	90	75
4 (PS)	100	100	100	100	100	100	100	100	100	100	100	100	100
5 (PMMA)	100	100	100	100	100	100	100	100	100	100	100	100	100

Best Overall performance with >70% PE and 100% PS , PP & PMMA

- HMW Epoxy Acrylate
- TMCHA
- Cycloaliphatic Acrylate

Identified addition of high boiling solvent to TMCHA formulation improved adhesion on PE to 100%

Formulators find that adhesion can be a challenge depending upon the substrate

Understanding the chemical nature of the coating, the chemical nature of the substrate, and the numerous factors affecting coating-substrate affinity, can help a formulator improve adhesion dramatically

Other factors, such as surface tension, coefficient of thermal expansion, internal stress due to crosslinking, and tensile properties of the coating all influence the coatings ability to adhere to the substrate

It is up to the formulator to test these concepts and determine what is necessary to satisfy the technical requirements of their coating and application

