

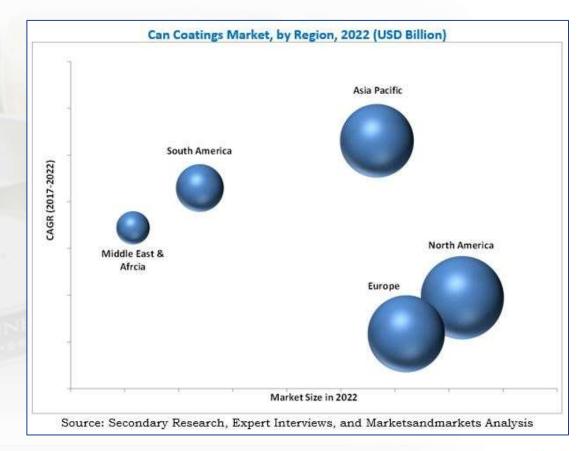
# High Performance UV-Cured Enamels for Can Coatings Primer

Tuesday March 10<sup>th</sup>

2020

REDTECH

Presented by


Paul Kelly



### **Market Overview**

North America was the largest market for can coatings, in terms of value and volume, in 2016

The global can coatings market was estimated at USD 1.91 Billion in 2017 and was projected to reach USD 2.27 Billion by 2022, at a CAGR of 3.4% between 2017 and 2022.







### Outline

A. Introduction

**B.** Experimental

**C.** Results and Discussion

**D.** Conclusion







#### A. Introduction

Ex crimental

C. Results and Discussion

**D.** Conclusion





# Introduction

#### Current Metal Coating Industry Status

- Predominantly Traditional Baked coatings.
  - ✓ Excellent adhesion
  - ✓ Mechanical and resistance properties
  - ✓ Adhesion on metal substrates (Tin-plate, TFS etc)







### Introduction

#### ➤ concerns

- Environmental issues
  - Solvents (VOCs)
- Policy restrictions
  - Surface coating of cans is one of the largest industrial operations identified as sources of VOC / HAPs and is regulated by U.S. EPA CAA (<u>40 CFR part 63</u> – see statement 20<sup>th</sup> Dec 2019)
  - Trend is global By 2020, China is projected to reduce VOC emission by 50% compared to 2016.
- Energy consumption
  - **Baking ovens use more energy.**

**More energy consumption = More cost** 





- Target:
  - Develop a UV curable white coating suitable for application directly to metal

- Methodology:
  - By studying and evaluating formulation based on different combination of raw material components





### Outline

#### Introduction

#### **B.** Experimental

C. Results and Discussion

**D.** Conclusion







### Experimental

#### **Curing preparation**

Substrate used is Tin-plated steel (TFS also evaluated, but less difficult)

• The tinplate surface was cleaned by wiping with acetone-soaked cotton, then dried under room temperature.

• RDS#10, where film thickness was controlled between 8-12 µm.





### **Experimental**

#### > Test method & Instrument

Gloss meter T-bend Proves Zero T One T Two T #4. PCA-4 Hardness Impact resistance Drawing test F.V Adhesion cotch Transparent rengsz.com **Qualipoly Chemical** 

Corp.

Viscosity

(*Ford cup #4*)



### Outline

A. Introduction

**B./ Experimental** 

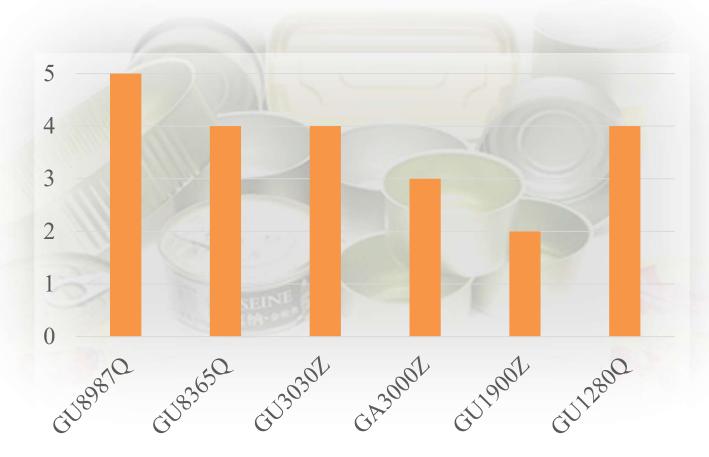
#### **C. Results and Discussion**

D. Conclusion



#### **Resin - The oligomers**

| QualiCure <sup>TM</sup> | GU8987Q                                                   | GU8365Q                                                   | GU1280Q                                                    | GU1900Z                       | GU3030Z                                          | GA3000Z                                                                           |
|-------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------|
| Resin Type              | Polyester<br>acrylate                                     | Polyester<br>acrylate                                     | Modified<br>flexible Epoxy<br>acrylate                     | Modified<br>Epoxy<br>acrylate | Urethane<br>acrylate                             | Urethane<br>acrylate                                                              |
| Functionality           | 1                                                         | 2                                                         | 2                                                          | 2                             | 2                                                | 2                                                                                 |
| Feature                 | <ul> <li>Pigment<br/>wetting</li> <li>Adhesion</li> </ul> | <ul> <li>Pigment<br/>wetting</li> <li>Adhesion</li> </ul> | <ul><li>Tensile<br/>strength</li><li>Workability</li></ul> | • Flexibility                 | <ul><li>Elongation</li><li>Workability</li></ul> | <ul> <li>Elongation</li> <li>Tensile<br/>strength</li> <li>Workability</li> </ul> |

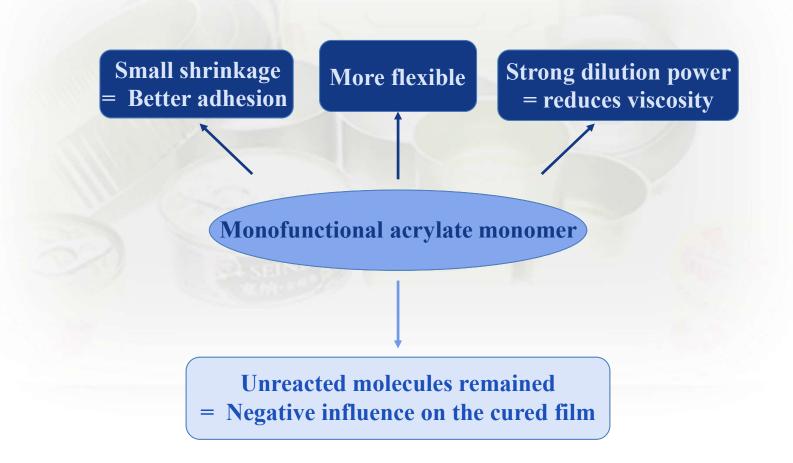



Marketing

**Products** 

Financial erformance






The degree of adhesion (0B-5B). The formula consists of 95% oligomer and 5% Omnirad 1173, coated with RDS#4 on tinplate. UV exposure was carried out under 1000mj/cm<sup>2</sup>, 600 mw/cm<sup>2</sup> condition.





#### > Monomer Influence







#### > Monomer Influence

Greater cross-link = Improved toughness and chemical resistance

> Di-functional & Multifunctional acrylate monomer

> > Large shrinkage

= Poor adhesion



#### Less shrinkage = Improved adhesion





#### **Basic Formula**

|              | Formula (%) |    |    |                       |    |    |    |
|--------------|-------------|----|----|-----------------------|----|----|----|
| Raw material | 1#          | 2# | 3# | <b>4</b> <sup>#</sup> | 5# | 6# | 7# |
| GU8365Q      | 20          | 20 | 20 | 20                    | -  | -  | -  |
| GU8987Q      | -           | -  | -  | -                     | 20 | 20 | 20 |
| GU3030Z      | 20          | 20 | 20 | 20                    | 20 | -  | -  |
| GA3000Z      | -           | -  | -  | -                     | -  | 20 | 20 |
| GU1900Z      | 10          | 10 | 10 | 10                    | 10 | 10 |    |
| GU1280Q      | -           | -  | -  | -                     | -  | -  | 10 |
| CTFA         | 6           | -  | -  | 6                     | 6  | 6  | 6  |
| EOEOEA       | -           | 6  | 6  | -                     | -  | -  | -  |
| DPGDA        | 3           | 3  | -  | -                     | -  | -  | -  |
| NPG2PODA     | -           | -  | 3  | 3                     | 3  | 3  | 3  |
| ТМР20ЕОТА    | 2           | 2  | 2  | 2                     | 2  | 2  | 2  |





#### **Basic Formula (Cont)**

| Dow motorial         | Formula (%) |    |    |                       |    |    |    |  |
|----------------------|-------------|----|----|-----------------------|----|----|----|--|
| Raw material         | 1#          | 2# | 3# | <b>4</b> <sup>#</sup> | 5# | 6# | 7# |  |
| Solsperse 32000      |             |    |    | 1                     |    |    |    |  |
| BYK-3710             |             |    |    | 0.1                   |    |    |    |  |
| BYK-088              |             |    |    | 0.4                   |    |    |    |  |
| Dupont-R960          |             |    |    | 30                    |    |    |    |  |
| GA2600Y              |             |    |    | 1                     |    |    |    |  |
| ESACURE KIP160       |             |    |    | 5.5                   |    |    |    |  |
| Omnirad 819          |             |    |    | 1                     |    |    |    |  |
| <b>Omnirad TPO-L</b> |             |    |    | 2                     |    |    |    |  |
|                      |             |    |    |                       |    |    |    |  |



#### Formula Comparison

| Raw material | Formu | ıla (%) | (%) Formula Performance     |            |        |
|--------------|-------|---------|-----------------------------|------------|--------|
|              | 1#    | 2#      |                             | 1#         | 2#     |
| GU8365Q      | 20    | 20      | Adhesion                    | <b>2B</b>  | 2B     |
| GU8987Q      | -     | -       | Hardness                    | н          | Н      |
| GU3030Z      | 20    | 20      |                             | 11         | 11     |
| GA3000Z      | -     | -       | <b>T-Bend</b>               | <b>2</b> T | 2T     |
| GU1900Z      | 10    | 10      | Impact                      | PASS       | PASS   |
| GU1280Q      | -     | -       | resistance                  |            |        |
| CTFA         | 6     | -       | Dryness                     | Dry        | Sticky |
| EOEOEA       | -     | 6       | Viscosity<br>(" Ford 4 Cup) | 300        | 300    |
| DPGDA        | 3     | 3       | Gloss 60°                   | 85-90      | 85-90  |
| NPG2PODA     | -     | -       | GIUSS 00°                   | 03-70      | 03-90  |
| ТМР20ЕОТА    | 2     | 2       | Hiding power                | Poor       | Poor   |





#### **Formula Comparison**

| Raw material | Formula (%) |                       |  |  |
|--------------|-------------|-----------------------|--|--|
|              | 1#          | <b>4</b> <sup>#</sup> |  |  |
| GU8365Q      | 20          | 20                    |  |  |
| GU8987Q      | -           | -                     |  |  |
| GU3030Z      | 20          | 20                    |  |  |
| GA3000Z      | -           | -                     |  |  |
| GU1900Z      | 10          | 10                    |  |  |
| GU1280Q      | -           | -                     |  |  |
| CTFA         | 6           | 6                     |  |  |
| EOEOEA       | -           | -                     |  |  |
| DPGDA        | 3           | -                     |  |  |
| NPG2PODA     | -           | 3                     |  |  |
| ТМР20ЕОТА    | 2           | 2                     |  |  |

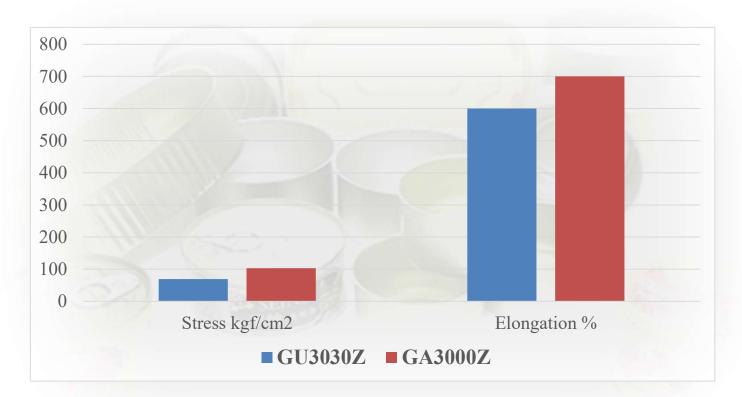
| Performance                 | Formula |                       |  |  |  |
|-----------------------------|---------|-----------------------|--|--|--|
| r ei ioi mance              | 1#      | <b>4</b> <sup>#</sup> |  |  |  |
| Adhesion                    | 2B      | <b>4B</b>             |  |  |  |
| Hardness                    | Н       | F                     |  |  |  |
| T-Bend                      | 2T      | 1T                    |  |  |  |
| Impact<br>resistance        | PASS    | PASS                  |  |  |  |
| Dryness                     | Dry     | Dry                   |  |  |  |
| Viscosity<br>(" Ford 4 Cup) | 300     | 200                   |  |  |  |
| Gloss 60°                   | 85-90   | 85-90                 |  |  |  |
| Hiding power                | Poor    | Fair                  |  |  |  |

Copyright © 2019 QPC. All rights reserved.

Qualipoly Chemical Corp.



#### **Formula Comparison**


| Raw material | Formu | ıla (%) | Performance                 | For        | mula       |
|--------------|-------|---------|-----------------------------|------------|------------|
| Naw matchiai | 4#    | 5#      | I CITOI Mance               | 4#         | 5#         |
| GU8365Q      | 20    | -       | Adhesion                    | 4B         | 5B         |
| GU8987Q      | -     | 20      |                             | Г          | T          |
| GU3030Z      | 20    | 20      | Hardness                    | F          | F          |
| GA3000Z      | -     | -       | T-Bend                      | 1 <b>T</b> | <b>1</b> T |
| GU1900Z      | 10    | 10      | Impact resistance           | PASS       | PASS       |
| GU1280Q      | -     | -       | <b>r</b>                    |            |            |
| CTFA         | 6     | 6       | Dryness                     | Dry        | Dry        |
| EOEOEA       | -     | -       | Viscosity<br>(" Ford 4 Cup) | 200        | 200        |
| DPGDA        | -     | -       |                             |            |            |
| NPG2PODA     | 3     | 3       | Gloss 60°                   | 85-90      | 90-100     |
| ТМР20ЕОТА    | 2     | 2       | Hiding power                | Fair       | Excellent  |
|              |       |         |                             |            |            |

Copyright © 2019 QPC. All rights reserved.

Corp.



#### > Tensile and elongation comparison



• T-Bend performance could be further improved by switching to GA3000Z



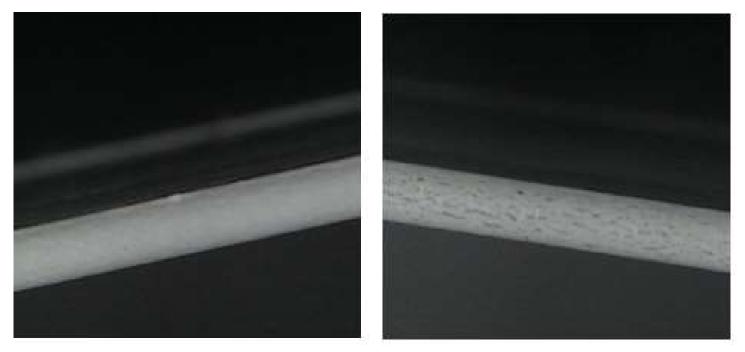


#### **Formula Comparison**

| Raw material | Formı | ıla (%) | Performance                 | For       | Formula   |
|--------------|-------|---------|-----------------------------|-----------|-----------|
|              | 5#    | 6#      | i ci ioi manee              | 5#        | 6#        |
| GU8365Q      | -     | -       | Adhesion                    | 5B        | 5B        |
| GU8987Q      | 20    | 20      |                             | _         | _         |
| GU3030Z      | 20    | -       | Hardness                    | F         | F         |
| GA3000Z      | -     | 20      | T-Bend                      | 1T        | ОТ        |
| GU1900Z      | 10    | 10      | Impact resistance           | PASS      | PASS      |
| GU1280Q      | -     | -       |                             | 11100     | 11100     |
| CTFA         | 6     | 6       | Dryness                     | Dry       | Dry       |
| EOEOEA       | -     | -       | Viscosity<br>(" Ford 4 Cup) | 200       | 200       |
| DPGDA        | -     | -       |                             |           | 0.0.4.0.0 |
| NPG2PODA     | 3     | 3       | Gloss 60°                   | 90-100    | 90-100    |
| ТМР20ЕОТА    | 2     | 2       | Hiding power                | Excellent | Excellent |






#### **Formula Comparison**

| Raw material | Formula (%)                   |                | Performance                 | Form      | Formula   |
|--------------|-------------------------------|----------------|-----------------------------|-----------|-----------|
|              | 6 <sup>#</sup> 7 <sup>#</sup> | I CI IOI Mance | 6#                          | 7#        |           |
| GU8365Q      | -                             | -              | Adhesion                    | 5B        | 5B        |
| GU8987Q      | 20                            | 20             | тт 1                        | Г         | п         |
| GU3030Z      | -                             | -              | Hardness                    | F         | Н         |
| GA3000Z      | 20                            | 20             | T-Bend                      | 0T        | 0Т        |
| GU1900Z      | 10                            | -              | Impact resistance           | PASS      | PASS      |
| GU1280Q      |                               | 10             |                             |           |           |
| CTFA         | 6                             | 6              | Dryness                     | Dry       | Dry       |
| EOEOEA       | -                             | -              | Viscosity<br>(" Ford 4 Cup) | 200       | 150       |
| DPGDA        | -                             | -              |                             | 00.100    | 00 100    |
| NPG2PODA     | 3                             | 3              | Gloss 60°                   | 90-100    | 90-100    |
| ТМР20ЕОТА    | 2                             | 2              | Hiding power                | Excellent | Excellent |





• 10x Microscopic enlargement of the bended wedge in the T-Bend test of formula 7<sup>#</sup>(left) and formula 5<sup>#</sup>(right).



Intact (left)

Fractured (right)





#### ► Influence of Titanium Dioxide (TiO<sub>2</sub>) Addition

| The ratio of Titanium Dioxide addition |                        |                                                                             |                                                                                                                   |  |  |  |
|----------------------------------------|------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|
| 25%                                    | 30%                    | 35%                                                                         | 40%                                                                                                               |  |  |  |
| 5B                                     | 5B                     | 5B                                                                          | 4B                                                                                                                |  |  |  |
| 0Т                                     | ОТ                     | 0Т                                                                          | 1T                                                                                                                |  |  |  |
| 120                                    | 150                    | 200                                                                         | 300                                                                                                               |  |  |  |
| Poor                                   | Excellent              | Excellent                                                                   | Excellent                                                                                                         |  |  |  |
|                                        | 25%<br>5B<br>0T<br>120 | 25%       30%         5B       5B         0T       0T         120       150 | 25%       30%       35%         5B       5B       5B         0T       0T       0T         120       150       200 |  |  |  |





#### Influence of Surface Tension - Dyne Value

| UV ink performance on | Surface dyne value (dyne) of white coating |           |           |  |  |
|-----------------------|--------------------------------------------|-----------|-----------|--|--|
| the white coating     | Below 30                                   | 31-35     | 36-40     |  |  |
| Adhesion              | 3B-4B                                      | 4B-5B     | 5B        |  |  |
| Leveling              | Poor                                       | Excellent | Excellent |  |  |

• The dyne value of formula 7<sup>#</sup> is 38.





#### > Photo-Initiator Selection

#### (Surface curing type, short wavelength-UVB, UVC)

|                      | Photo-initiator |            |             |                    |  |
|----------------------|-----------------|------------|-------------|--------------------|--|
| Performance          | Omnirad 1173    | Omnirad BP | Omnirad 184 | Esacure<br>KIP-160 |  |
| Yellowing            | Moderate        | High       | Moderate    | Low                |  |
| Odor                 | High            | Low        | Moderate    | Low                |  |
| Curing<br>efficiency | High            | High       | Moderate    | Moderate           |  |
|                      |                 |            |             |                    |  |





#### > Photo-Initiator Selection

(Deep curing type, long wavelength-UVA)

| Performance          | Photo-initiator |                  |             |             |
|----------------------|-----------------|------------------|-------------|-------------|
|                      | Omnirad 819     | Omnirad<br>TPO-L | Omnirad 907 | Omnirad ITX |
| Yellowing            | Low             | Low              | High        | High        |
| Odor                 | Low             | Low              | High        | Moderate    |
| Curing<br>efficiency | High            | Moderate         | High        | Very high   |
| Solubility           | Poor            | Good             | Good        | Good        |

• Due to the poor solubility of Omnirad 819, the best selection will be the combination of Omnirad 819 and Omnirad TPO-L





#### > Machinability (draw process) of Formula 7<sup>#</sup>



1 cm drawing depth for round lid (left) and 2 cm drawing depth for square lid (right).





### > Machinability (draw process) of Formula 7<sup>#</sup>



1 cm drawing depth for keyhole type followed by steam cooking (121°C, 1 h).





1

### Outline

#### **A. Introduction**

B. Experimental

#### C. Results and Discussion

#### **D.** Conclusion







A feasible UV formula for white coating enamel has been rationally designed, enables lower energy consumption

> Other metal substrates are applicable e.g. aluminum

Future direction includes a better machinability e.g. up to 5 cm drawing depth





### Acknowledgement



James Tian





Herman Wang





Dr. Isaac Ho





### **Thanks for your participation**





